A human-made environmental disaster due to the shipwrecked of Costa Concordia cruise vessel on the Tuscan Island of Giglio (Italy) coast and the possible pollutants release has been feared, so requiring the activation of removal operations and the monitoring of the marine environment. In the present study, the seagrass Posidonia oceanica (L.) Delile was used as a bioindicator for the impact of the Costa Concordia accident on the marine and coastal habitat. Different P. oceanica samples were collected in the shipwrecked site under different light conditions. Using high-performance thin-layer chromatography, metabolic analysis of the samples was carried out in order to highlight possible changes in the secondary metabolism due to the permanent shading and the presence of pollutant traces. Moreover, sample mutagenicity, as a consequence of the possible absorption of environmental toxicants leaked by the wreck, was assessed by the Ames test. The results highlighted the permanence of the Concordia-induced alteration in the plant secondary metabolites. However, absorption of chemical pollutants and carcinogens was not reported; this point was confirmed by the lack of mutagenic effects found for the samples tested. Our results clearly evidence that the environmental impact of Costa Concordia wreck and removal operations on P. oceanica was mainly due to the lack of light in the marine habitat. Present methodological approach, which combines metabolomic and genetic ecotoxicological analysis, could represent a suitable strategy to evaluate the impact of human disasters on the ecosystem and to monitor the environmental changes.
Seagrass Posidonia oceanica (L.) Delile as a marine biomarker: A metabolomic and toxicological analysis / Toniolo, Chiara; DI SOTTO, Antonella; DI GIACOMO, Silvia; Ventura, Daniele; Casoli, Edoardo; Belluscio, Andrea; Nicoletti, Marcello; Ardizzone, Domenico. - In: ECOSPHERE. - ISSN 2150-8925. - STAMPA. - 9:3(2018), pp. 1-18. [10.1002/ecs2.2054]
Seagrass Posidonia oceanica (L.) Delile as a marine biomarker: A metabolomic and toxicological analysis
CHIARA TONIOLO;ANTONELLA DI SOTTO;SILVIA DI GIACOMO;DANIELE VENTURA;EDOARDO CASOLI;ANDREA BELLUSCIO;MARCELLO NICOLETTI;DOMENICO ARDIZZONE
2018
Abstract
A human-made environmental disaster due to the shipwrecked of Costa Concordia cruise vessel on the Tuscan Island of Giglio (Italy) coast and the possible pollutants release has been feared, so requiring the activation of removal operations and the monitoring of the marine environment. In the present study, the seagrass Posidonia oceanica (L.) Delile was used as a bioindicator for the impact of the Costa Concordia accident on the marine and coastal habitat. Different P. oceanica samples were collected in the shipwrecked site under different light conditions. Using high-performance thin-layer chromatography, metabolic analysis of the samples was carried out in order to highlight possible changes in the secondary metabolism due to the permanent shading and the presence of pollutant traces. Moreover, sample mutagenicity, as a consequence of the possible absorption of environmental toxicants leaked by the wreck, was assessed by the Ames test. The results highlighted the permanence of the Concordia-induced alteration in the plant secondary metabolites. However, absorption of chemical pollutants and carcinogens was not reported; this point was confirmed by the lack of mutagenic effects found for the samples tested. Our results clearly evidence that the environmental impact of Costa Concordia wreck and removal operations on P. oceanica was mainly due to the lack of light in the marine habitat. Present methodological approach, which combines metabolomic and genetic ecotoxicological analysis, could represent a suitable strategy to evaluate the impact of human disasters on the ecosystem and to monitor the environmental changes.File | Dimensione | Formato | |
---|---|---|---|
Toniolo_Seagrass_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.65 MB
Formato
Adobe PDF
|
2.65 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.